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Motivation

Topological K-theory fulfils Bott periodicity

KU(X) ∼= KU−2(X) KO(X) ∼= KO−8(X)

While there are quite a few proofs for the complex case in the literature (Hatcher [Hat17],

Atiyah [Ati67], Aguilar, Gitler, and Prieto [AGP08], Switzer [Swi02]) …

…the real case is often neglected:1

1at least in textbooks
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Atiyah’s KR-theory

Introduced in “K-theory and reality,” Atiyah [Ati66]

1. KR-theory is some kind of mixture of complex (KU) and
real K-theory (KO).

2. KR has a (1, 1)-periodicity analogous to the

2-periodicity of KU …

3. …out of which the 2-periodicity and 8-periodicity of KU
resp. KO can be derived!

4. Using KR-theory one can prove that the

Atiyah-Bott-Shapiro map α : A∗ → KO∗(pt) is an
isomorphism.

5. When doing index theory KR turns out to be the “right”

framework for the index theorem of real operators.

We will cover all except the last point in this talk, focusing

on items 3. and 4.

X-THEORY AND REALITY

By M. F. ATIYAH

[Received 9 August 1966]

Introduction

THE ^-theory of complex vector bundles (2, 5) has many variants and
refinements. Thus there are:

(1) ^-theory of real vector bundles, denoted by KO,
(2) ^"-theory of self-conjugate bundles, denoted by KC (1) or KSC (7),
(3) JT-theory of G-vector bundles over (?-spaces (6), denoted by KQ.

In this paper we introduce a new ^-theory denoted by KR which is,
in a sense, a mixture of these three. Our definition is motivated partly by
analogy with real algebraic geometry and partly by the theory of real
elliptic operators. In fact, for a thorough treatment of the index problem
for real elliptic operators, our KR-theory is essential. On the other hand,
from the purely topological point of view, KR-theory has a number
of advantages and there is a strong case for regarding it as the primary
theory and obtaining all the others from it. One of the main purposes of
this paper is in fact to show how i£.R-theory leads to an elegant proof of
the periodicity theorem for XO-theory, starting essentially from the
periodicity theorem for JT-theory as proved in (3). On the way we also
encounter, in a natural manner, the self-conjugate theory and various
exact sequences between the different theories. There is here a consider-
able overlap with the thesis of Anderson (1) but, from our new vantage
point, the relationship between the various theories is much easier to see.

Recently Karoubi (8) has developed an abstract Z'-theory for suitable
categories with involution. Our theory is included in this abstraction but
its particular properties are not developed in (8), nor is it exploited to
simplify the iTO-periodicity.

The definition and elementary properties of KR are given in § 1. The
periodicity theorem and general cohomology properties for KR are
discussed in § 2. Then in § 3 we introduce various derived theories—
KR with coefficients in certain spaces—ending up with the periodicity
theorem for KO. In § 4 we discuss briefly the relation of KR with
Clifford algebras on the lines of (4), and in particular we establish a
lemma which is used in § 3. The significance of KR-thsory for the
topological study of real elliptic operators is then briefly discussed in § 5.
Q u i t . J. Mmth. Oxford (2), 17 (1966), 367-86.
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Basics of KR-theory
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The Real category

Definition 1

A Real space is a topological space X with a

continuous involution τ : X→ X. A Real map
commutes with the involutions.

We often think of τ as complex

conjugation and hence use the bar

notation x 7→ x in general.

Subspace of Real points:

XR := {x ∈ X | x = x}

A Real subspace is closed under τ⇒
basepoints have to be fixed points!

Examples:

(i) Any X with τ = id

(ii) C with τ(x) = x

(iii) More generally: Rp,q := Rq ⊕ i ·Rp
with τ(x, y) = (x,−y). In particular

Ck ∼= Rk,k as Real spaces.

(iv) Corresponding spheres and balls:

Sp,q ⊂ Bp,q ⊂ Rp,q
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But wait: That’s just the definition of a G-space for G = Z2! – Right, but:

Definition 2

A Real vector bundle over a Real space X is a complex vector bundle E over X such that

(i) E is a Real space with involution τ,

(ii) the projection E→ X commutes with the involutions,

(iii) the map τ : Ex → Ex is anti-linear for every x ∈ X

It is clear where to go from here: Prove everything you know about complex bundles for Real bundles

(direct sums, tensor products, etc.) Then define for X compact and Real

KR(X) := Groth
(
VectR(X)

)
where VectR(X) is the monoid of isomorphism classes of Real vector bundles with the operation⊕.
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Connection with KO

From now on: (X, τ) compact Real space. Let F(X) be the category of Real vector bundles over X,
E(X) the one of real vector bundles.

Theorem 3

If X has trivial involution, then there is an equivalence of categories E(X) ∼= F(X)

Proof: Consider

E(X)
∼=−−−→ F(X)

E 7−−−→ E⊗R C
FR 7−−−→ F

Corollary 4

If X has trivial involution, then KR(X) ∼= KO(X).
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Connection with KU

S1,0 = {±1} with the involution interchanging the two points.

Theorem 5

There is a natural isomorphism KR(X× S1,0) ∼= KU(X), no matter the choice of involution τ on X!

Proof: Restriction to X× {+1} gives a complex bundle E→ X. Put τ∗E over the other copy of X to get

back the Real bundle.

Proceed to define reduced and relative KR-groups exactly as in the classical case.
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Suspension Groups

Recall: K−1(X) = K(ΣX)

For KR there are two choices of involution on the suspension!

We may use t 7→ t on the real axis KR0,1(X).

Or t 7→ −t on the real axis KR1,0(X)

In general: KRp,q

Definition 6

For p, q > 0 we define

KRp,q(X, Y) := KR((X \ Y)×Rp,q)

The “usual suspension groups” are recovered by KR−q := KR0,q.

KR0,0(X, Y) = KR(X, Y)

X

ΣX

KR0,1(X)KR1,0(X)
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Products and (1, 1)-periodicity

Via projections and tensor products one defines external products:

KRp,q(X, Y)⊗ KRs,t(X ′, Y ′) → KRp+s,q+t
(
X× X ′, X× Y ′ ∪ Y × X ′)

LetH be the dual of the tautological bundle over CP1. H is a Real bundle.

Theorem 7 ((1, 1)-periodicity)

The element
b = [H] − 1 ∈ KR1,1(pt) = KR(B1,1, S1,1) = K̃R(CP1) = KR(R1,1)

is called the Bott element (or reduced Hopf bundle). Multiplication by b gives an isomorphism

β : KRp,q(X, Y)
∼=−−−→ KRp+1,q+1(X, Y)

Proof: Modify the “elementary proof” of Atiyah and Bott [AB64] for the Real case. See [Ati66].

Set KRp := KRp,0 for p > 0. Then KRp,q ∼= KRp−q
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Applications of KR-theory
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KR-theory with coefficients

Let Y be some compact Real space. The functor X 7→ KR(X× Y) defines a new theory called

KR-theory with coefficients in Y.

KR(X× S1,0) ∼= KU(X) suggests that Y = Sp,0 might be interesting.

If F is a functor as above we say, that F has period q, if F ∼= F−q, where F−q is defined via

suspensions with trivial involution.

Lemma 8

KR-theory with coefficients in Sp,0 has the following period as

indicated in the table.

Intuitively:

p = 1 KU

p = 2 KSC (K-theory of self conj. bundles)

p = 4 KO

p period

1 2

2 4

4 8
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Proof: For p = 1, 2, 4 we viewRp asR, C,H. Now consider

µp : X× Sp,0 ×R0,p −−−→ X× Sp,0 ×Rp,0

(x, s, u) 7−−−→ (x, s, us)

µp is Real. Replacing X by a suitable suspension we get

µ∗p : KR
p,q(X× Sp,0)

∼=−−−→ KR0,p+q(X× Sp,0)

Applying the (1, 1)-periodicity isomorphism β p times in the case p = q we arrive at

γp := µ∗p ◦ βp : KR(X× Sp,0)
∼=−−−→ KR0,2p(X× Sp,0) = KR−2p(X× Sp,0)

γp is KR(X× Sp,0)-linear and therefore given by multiplication with

cp = γp(1) = µ
∗
p(1 ∗ bp) ∈ KR−2p(Sp,0)
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Corollary 9 (Complex Bott periodicity)

We have KU(X) ∼= KU−2(X).

Proof: Obivous, since

KR(X× S1,0) ∼= KU(X).

Consider the inclusion ι : R = R0,1 ↪→ R1,1 = C.

η = ι∗(b) = ι∗([H] − 1) ∈ KR0,1(pt)

is called the reduced real Hopf bundle (ι∗(H) is
the real Hopf bundle).

Theorem 10 (Gysin Sequence)

There is an exact sequence

. . . KRp−q(X) KR−q(X) KR−q(X× Sp,0) . . .
χ

·(−η)p
π∗ δ

where π : Sp,0 → pt is the projection and χ is the product with (−η)p.
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The KO-KU-sequence

Gysin sequence for p = 1:

. . . KR1−q(X) KR−q(X) KU−q(X) KR2−q(X) . . .
χ π∗ δ

With trivial involution on X:

. . . KO1−q(X) KO−q(X) KU−q(X) KO2−q(X) . . .
χ c δ

where c is the map induced by complexification. This is the KO-KU-sequence.
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Clifford modules

We denote with C`p the real Clifford algebra with generators e1, . . . , ep such that e2i = −1 and
eiej = −ejei for i 6= j.

Goal

Define a “suitable” group of C`p-modules.

We denote with M̂p the free abelian group generated by the irreducibleZ2-graded
C`p-modules.

The inclusion i : C`p ↪→ C`p+1 induces a restriction of scalars homomorphism

i∗ : M̂p+1 −−−→ M̂p

and we defineAp := coker i∗.

There are complex analogues over the complex Clifford algebras C`p, denoted by M̂c andAcp.

Via the graded tensor product we get graded rings M̂∗ andA∗.
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p C`p M̂p Ap M̂c
p Acp

1 C Z Z2 Z 0

2 H Z Z2 Z ⊕Z Z

3 H ⊕H Z 0 Z 0

4 M2(H) Z ⊕Z Z Z ⊕Z Z

5 M4(C) Z 0 Z 0

6 M8(R) Z 0 Z ⊕Z Z

7 M8(R)⊕M8(R) Z 0 Z 0

8 M16(R) Z ⊕Z Z Z ⊕Z Z

Theorem 11 (Atiyah, Bott, and Shapiro [ABS64])

A∗ is the anticommutative graded ring generated by a unit 1 ∈ A0 and elements ξ ∈ A1, µ ∈ A4,
λ ∈ A8 with the relations 2ξ = 0, ξ3 = 0, µ2 = 4λ
Complex case: Ac∗

∼= Z[µc] with µc ∈ Ac2.
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The Atiyah-Bott-Shapiro map

Consider

M̂p −−−→ KO(Bp, Sp) = KO−p(pt)

M =M0 ⊕M1 7−−−→
[
M0,M1;σ

]
where σ is defined by Clifford multiplication with x ∈ Bp ⊂ Rp ⊂ C`1p, which gives a mapM0 →M1,

that is an isomorphism for x ∈ Sp. These maps induce a homomorphism of graded rings

α : A∗ −−−→ KO∗(pt)

called the Atiyah-Bott-Shapiro map.

The same construction can be carried out in the complex case yielding αc : Ac∗ → KU∗(pt).

Furthermore there is a Real variant with C`p,q in place of C`p (which is of little avail for us)
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The ABS map is an isomorphism – Preliminaries

The original proof of Atiyah, Bott, and Shapiro [ABS64] is rather unsatisfactory, since it requires

complete knowledge of the ring KO∗(pt).

Our main tool: The KO-KU-sequence and knowledge ofA∗. Furthermore we need:

The complex ABS map is an isomorphism: αc : Ac∗
∼=−−→KU−∗(pt)

Complexification on the level of Clifford modules takes the following form

A4 Ac4 A8 Ac8

µ 2(µc)2 λ (µc)4

Some “activation energy” to get the KO-KU-sequence going: α : A1
∼=−−→KO−1(pt) ∼= Z2 (use

the definition of α to show that α(ξ) = η, then argue, that η is the nontrivial element)
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The ABS map is an isomorphism – Proof

Consider the following portion of the KO-KU-sequence:

KU−3 KO−1 KO−2 KU−2 KO0 KO−1 KU−1

0 Z2 Z2{η2} Z Z Z2 0

·η c

0

δ

·(±2)

·η

∼ = ∼ = ∼ = ∼ = ∼ =

The next bit of the sequence has the following form:

A4 Ac4

KU−5 KO−3 KO−4 KU−4 KO−2 KO−3 KU−3

0 0 Z Z Z2{η2} 0 0

α

c

·2

αc∼=

·η c

·2
δ ·η

∼ = ∼ = ∼ =

η3 = 0, since ξ3 = 0 and α(ξ) = η.
⇒ α is an isomorphism in degrees up to 4. Similar arguments give the remaining cases 5, 6, 7, 8.
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Proof of real Bott periodicity – Preliminaries

As η3 = 0 the Gysin sequence for p > 3 splits up:

0 KR−q(X) KR−q(X× Sp,0) KRp+1−q(X) 0
π∗ δ

Recall: Multiplication by c4 ∈ KR−8(S4,0) gave the 8-periodicity of KR(X× S4,0).

Lemma 12

Let 1 denote the identity of KR(S4,0). Then with λ the generator ofA8 and pr : S4,0 → pt

c4 = α(λ) ∗ 1 = pr∗(α(λ)) ∈ KR−8(S4,0)

Proof:

0 KO−8(pt) KR−8(S4,0) KO−3(pt) 0
pr∗

KO−3(pt) = 0 by the ABS Isomorphism, so c4 = pr∗(n · α(λ)). But n = ±1, since otherwise
multiplication by c4 could not induce isomorphisms for general X.
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Proof of real Bott periodicity – Final Step

Theorem 13

Let λ ∈ A8, α(λ) ∈ KO−8(pt) = KR−8(pt) as above. Then multiplication by α(λ) induces an iso

KR(X)
∼=−−−→ KR−8(X)

Proof:Consider the diagram with all vertical maps given by multiplication with α(λ)

0 KR−q(X) KR−q(X× S4,0) KR5−q(X) 0

0 KR−q−8(X) KR−q−8(X× S4,0) KR−3−q(X) 0

φ−q ψ−qψ−q∼= φ5−q

By Lemma 12 the map ψ−q is an isomorphism for every q. Hence φ−q is injective for every q, in
particular: φ5−q is injective⇒ φ−q surjective.
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