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Recap on positive scalar curvature metrics

Let (M, g) be a Riemannian manifold.
m Central notion in differential geometry: Riemannian curvature tensor associated to g.
m Tensor contraction turns this into scalar curvature ~~ smooth function scalg: M — R

Existence question
Given a smooth manifold M. Does M admit a metric with scaly > 07
m There are many (topological) obstructions to admitting psc (A-genus, a-invariant, enlargeability,

).

m Index theory provides a bridge to topology, but only works in the presence of spin structures.
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The space of psc metrics

Definition (Space of metrics)

Let R(M) be the space of Riemannian metrics (with the C*-topology).

Note: R(M) is convex, so R(M) ~ x

Definition (Space of psc metrics)

|

RT(M) = {g € R(M) | scalg >0}

If M has boundary, prescribe a metric h on 9M and require product structure ~» Rt (M)y,.

Uniqueness question

Assume R (M) = (). What is the homotopy type of R (M)?
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First main tool: Gromov-Lawson—-Chernysh surgery

Let d: V¥ x R4k < M4 be an open embedding and hy € R* (V)

Definition

RT(M, ¢) = space of psc metrics with prescribed metric on im(¢)

Theorem (CHERNYSH [Che04]) Corollary (Surgery equivalence)

Ifd —k > 3, then the inclusion ForV =S*and d —k,k > 3 there is a preferred
class of weak homotopy equivalences
R (M, ) —— R* (M)
R (M) ~ R (My)
is a weak equivalence. Similarly for R* (M),
where Mg, denotes the surgered manifold.
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Second main tool: the index difference

From now on we assume all manifolds to be spin.

Index difference of HITCHIN [Hit74]

Idea: define a map to K-theory using index theory and find elements of 7, (R (M)} ) that survive.
Result: For go € R (M)

inddiff g, : R (M) —— Q®T4TTKO

m Index of the Dirac operator D4 will be zero for every g € R* (M) (Lichnerowicz).
m Compare two metrics instead: tgo + (1 —t)g; yields a path of Fredholm operators.
m Start and end are invertible, since go, g1 € R (M)
m The invertible operators make up a contractible space (Kuiper)
= After taking the index, the path can be interpreted as a loop in K-theory
(in a proper implementation of this idea | would use KK-cycles)

Spaces of PSC metrics and parametrised Morse theory j.bantje@wwu.de 4


mailto:j.bantje@wwu.de

The detection theorem

Let M4 be compact spin,d > 6, h € R (0M), go € R (M)n and k > 0.

Theorem (BoTVINNIK, EBERT, and RANDAL-WILLIAMS [BERW17])

The induced map

Z ifm=0 mod4
(inddiff g, ) ﬂk(IRJr(M)h) —— KOkigqr1=m(*) =< Z/2 ifm=1,2 mod38
0 else

is (rationally) surjective.
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The factorisation theorem ="=wwy o)

m Let MTSpin(d) be the Madsen—Tillmann spectrum
m There is a KO-orientation A_4: MTSpin(d) — Z~4KO (“topological index”)
mA=0%M\_4)

Theorem
There exists a map p: Q®T'MTSpin(d) — R (M), such that

oo+1 - P +(nqd inddiffg, co+d+1
Q®FTMTSpin(d) ——— RT(M%);, —— Q KO

\_/?

QA
is homotopy commutative.

(Rational) surjectivity of A, = Detection Theorem.
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Improving the detection theorem
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Improvement 1: Higher index theory

“richer” target for Potential to detect more

=

index difference classes of MR (M),

Higher index difference

inddiffS : R* (M), —— Q®"4TKO(C*(G))
where C*(G) is the (reduced) group C*-algebra for G = 71y M.

m The spin Dirac operator on M can be twisted by a bundle E, which introduces an extra term in the
Lichnerowicz formula (see enlargeability and Llarull’s theorem).
m Rosenberg: Twist with the flat MiS¢enko—Fomenko line bundle L5 .= EG xg C*(G) — BG
m twisted Dirac operator D¢ acts on a Hilbert-C*(G)-module and has an index in KO4(C*(G))
Analogue for the topological index, using the Novikov assembly map v:

n: MTSpin(d) ABG, ——", s—agO ABG, —=¥ £4KO(C*(G))
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The Detection theorem for higher index theory

Theorem (EBERT and RANDAL-WILLIAMS [ERW19a; ERW19b])

M4 spin, compact, d > 6. Then there exists p such that

inddiff$
Q@+ (MTSpin(d) ABGy) —>— RT (M%), ——= Q®+I+TKO(C*(G))

\/

Qoo+1 n
is homotopy commutative

To derive detection results: study the assembly map ~» assumptions on G.
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Improvement 2: Extensiontod > 5

Theorem (PERLMUTTER [Per17b])

The original detection and factorisation theorems also hold for d > 5.

m Backto the roots: Replace GRW methods by original methods of MADSEN and WEISS [MWO07]
m Series of two preprints (sadly, he left mathematics):
1. Extension of MADSEN and WEIss [MWO07] methods

(to reprove high-dimensional MW theorem of GALATIUS and RANDAL-WILLIAMS [GRW14])
2. Application to PSC

Theorem (B.)

Both improvements, i.e.

1. incorporation the fundamental group via higher index theory
2. extensiontod > 5
can be carried out in unison.
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Parametrised Morse Theory

Spaces of PSC metrics and parametrised Morse theory j.bantje@wwu.de 9


mailto:j.bantje@wwu.de

Spaces of manifolds: Long manifolds

K
Definition (GALATIUS and RANDAL-WILLIAMS) Theorem [GMTWO09; GRW10]

The space of manifolds with one non-compact direction is
given by 1
Q®7'MTO(d) ~ D; ~ BCob
Dy = {(W,f) | f: W — R smooth and proper} () ! ©
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How can we turn a long d-manifold into a (d — 1)-manifold?

> R

Just take f~'(a) at a regular value a € R!

m MADSEN and WEISS method:
Non-destructive way to lower the
dimension like this!

m Have to perform a “regularisation”
to avoid critical points

Definition

LetO <k < |d/2].

Let D! D4 subspace with f Morse,
Morse indices in{k,...,d — k} and

{: W — BO(d) (k — 1)-connected.

The restriction on Morse indices was
introduced by PERLMUTTER [Per17a].
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Local model for critical points

V =V*" @V innerproduct space. The saddle is defined as

sdl(V) = {v eV \ vl Iv_]? < 1}

Canonical height function on sdI(V) with unique critical point at the origin:
fy(v) = v l* = [lv_||?

Regularisation: Remove V' or V— and adjust height function such that height approaches +oo near
v,

Definition
£ has the same data as D™ with embedded saddles around all critical points, such that the height
functions fy and f are compatible.
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Plots of the saddle

i M, e

Spaces of PSC metrics and parametrised Morse theory j.bantje@wwu.de 13


mailto:j.bantje@wwu.de

Regularisation involves choices! == wwy

critical point

regularisation regularisation
towards 4+oo towards —oco
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Custom indexing category

Let X! be the category of
m finite sets T equipped with labelling functions T — {k,...,d — k}

m Morphisms are injections over{k,...,d — k} plus signs +1 for all points not in the image.

Definition
The L[Tk] contains the same data as £ plus a choice =1 of regularisation direction for all but finitely
many critical points, which instead are indexed by T € K¥,

Lemma
hocolim L[TkJ =, g =, piH
Tex k]
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Regularisation and (d — 1)-mainfolds with surgery data

Fix T and an element in L[Tk]
m Move critical points indexed by T to height zero and others to height < —1 or > +1 resp.

m Perform all regularisations (regularise the critical points indexed by T towards +o0) ~ new
height function f®.

m The embedded saddles indexed by T give surgery data SP x D4~1—P —; (f&)~1(0) for
pefk—1,...,d—k—1}

= geta (d — 1)-manifold (f®)~'(0) equipped with surgery data indexed by T

Defintor

Let W[Tk] be the space of closed The above procedure defines a map, which is a
(d — 1)-manifolds M equipped with surgery levelwise weak equivalence
data indexed by T and ¢: M — BO(d)
(k — 1)-connected. hocolim W/V[T]d +=— hocolim L[Tk]
Texlkl Texlkl
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Homotopy type of the cobordism category with Morse
functions

Definition (Morse Grassmannian) As for the usual Grassmannian:

For integers k and N we let Grgde (R4+N) denote the space Build a Thom spectrum out of the
of triples (V, 1, ) where ' Thom spaces of the complements

() V € RE*N is an element of Gra o (R4+N) of the canonical bundles

N . . Yo = Gro:

(i) 1: V= R linear functionalando: V xV = R
symmetric bilinear form s.th.: If 1 = 0, then o is th;Je = Th(—vye)
non-degenerate with k < index(o) < d —k ’

Theorem [MWOQ7; Per17a]

The Pontryagin—Thom construction yields weak equivalences

Q= ThWi'y ~ Dg ~ BCob"*

The proof is a very involved inductive argument in k with [MWO07, Thm. 1.2] as base case.
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Proofsketch
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Recap of parametrised Morse theory

2

. kKl o~ . k ~ k
— hocollm\/\7([9]T — hocollmLé}T Dé} Deo.1
Tex (k] ’ Texl > ’

(k]
Wo.o

2 2
Q®MTOg—1 — Q% ThW§ 4 — Q* 'MT0q

m There are comparison maps T TMTO4 1 — hW‘e‘,d — MT0,.

[ ng]@ is the space of closed (d — 1)-manifolds with 64 1-structure, where 841 is the restriction
of 0 to BO(d — 1) such that the structure map is (k — 1)-connected
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Index theory for spaces of manifolds

Specialize the tangential structure to 6: BSpin(d) x BG — BO(d) and set C*(04) = C*(G) ® Clq

D[ek],psc SN Dgsc — D(C*(04))1 >~ *

Lk J

ind1

Do) —— Do =2 KO(C*(8a))s

m EBERT [Ebe19] established an index theory for spaces

of manifolds (in the generality of C*-linear Dirac .
operators). m The composition F o ind; factors

m Roughly: Index as map of spectra from the spaces of itret) GBS I, )
manifolds spectrum of GALATIUS and m The space of degenerate cycles is

RANDAL-WILLIAMS [GRW10]. contractible
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The fibration theorem ="=wwy @f MM

Definition

We define Wy3™ as Wek)]T plusapsc  Fork > 3 the forgetful map

metric g on M, which restricts to the

standard metric on the surgery data, hocolim W ’f]T’psc — hocolim W T
i.e. €9 = Ground + Gtor fOT ST TGS

e: SP x D4k — M.

(—\‘|

is a quasifibration with fibre over (M, () given by Rt (M).
m The assumption k > 3 arises from the Gromov-Lawson—Chernysh surgery. Here the symmetric
restriction of the Morse indices fits perfectly!
k>3 = d>6
m The tangential 2-type of a spin manifold M™ is BSpin(n) x BrtyM — BO(n), hence in our case
of interest (k — 1)-connectivity of the structure maps is not an issue fork = 3.

After finding psc variants for Le + and an identification of the induced map on
homotopy fibres...
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The main diagram

Ford > 6,dmM =d—1andk =3

RJF(M) inddiff & QH(O(C*(ed)h

| |

WP s WP hocolim Lo 7™ —— D P s DF . D(C*(84))1 = ¥
5 Tej{:[k]

1 7 [
] - ind o
Wop —— Wy = hocolim Loy Dy’ Do,y —™ KO(C*(84))s
2 2

Q®MTOq_1 — Q° ThWg 4 — Q* 'MT04

Commutativity of maps to IKO(C*(04)); follows from index theorem
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Corollary: Factorisation ="=wwy

There is a fibration p with fibre R (M) X *

such that the diagram on the right is lp J
homotopy commutative and the induced L 0% ng

map on homotopy fibres is inddiff . Q®MTOq_1 — Q® ThWg 4 — KO(C*(84));

Taking the fibre transport of p at go yields p and the following factorisation ford —1 > 5

inddiff &
Q@ IMTOg_1 —— Q®hWE 4 —F— RF (M), —— Q= TIKO(C*(G))

\—/’/

().004»1],“171

Remark: Similar diagrams are used in [BERW17; ERW19a; ERW19b]
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The action Diff(M) ~ RT (M)

RT M) ——=R" (M) ——=R"(M)

!

R*(M)/ Diff®(M) ——— W([a%psc — hocol[ikrp WE]%‘”’C
h Tex J

| |

. B1 —1 3
hToecﬂch‘&m Wot =~ Q% "hWg 4

Theorem (B.)

Md-T ¢ Wg]épsc simply connected (i.e. © = BSpin) and go € R (M). The orbit map
Ogo: DiffSP" (M) — R+ (M) factors in 7, through a map

1 (DiffSP" (M) ~ 711 (BDIffPP™ (M) —— 1 q (MT Spin(d — 1))
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