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Recap on positive scalar curvature metrics

Let (M,g) be a Riemannian manifold.

Scalar curvature is the weakest curvature notion derived from the Riemannian curvature tensor.

At each point p ∈ M it is only a scalar quantity =⇒ smooth function scalg : M → R
Kazdan andWarner [KW75]: metrics of negative scalar curvature always exist

Existence question

Given a smooth manifoldM. DoesM admit a metric with scalg > 0?

By now you probably know, that there are many known obstructions to admitting psc.

Index theory provides the stronger results, but only works in the presence of spin structures.
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The space of psc metrics

Definition (Space of metrics)

Let R(M) ⊂ C∞(M, Sym2(T∗M)) be the space of Riemannian metrics (with the C∞-topology).

Note: R(M) is convex, so R(M) ' ∗

Definition (Space of psc metrics)

R+(M) :=
{
g ∈ R(M)

∣∣ scalg > 0
}

IfM has boundary, one requires g = h+ dt2 near the boundary for h ∈ R+(∂M).

R+(M)h :=
{
g ∈ R+(M)

∣∣ g|∂M ≡ h
}

Uniqueness question

Assume R+(M) 6= ∅. What is the homotopy type of R+(M)?
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First main tool: Gromov–Lawson–Chernysh surgery

Let φ : Vk ×Rd−k ↪→ Wd be an open embedding and hV ∈ R+(V)

Definition (R+ with prescribed metrics)

R+(W,φ) :=
{
h ∈ R+(W)

∣∣ φ∗h = hV + gd−k
tor near V ×Dd−k ⊂ V ×Rd−k

}

Theorem (Chernysh [Che04])

If d− k > 3, then the inclusion

R+(W,φ) −−−→ R+(W)

is a weak equivalence. Similarly for R+(W)g

Corollary (Surgery equivalence)

For V = Sk and d− k, k > 3 there is a preferred

class of weak homotopy equivalences

R+(W)g ' R+(Wφ)g

whereWφ denotes the surgered manifold.

Jannes Bantje, j.bantje@wwu.de 3 24

mailto:j.bantje@wwu.de


Spaces of PSC metrics and parametrised Morse theory

Second main tool: the index difference

From now on we assume all manifolds to be spin.

Idea due to Hitchin [Hit74]

Define a map to K-theory using index theory and find elements of πk(R
+(M)h) that survive.

Index of the Dirac operatorDg will be zero for every g ∈ R+(M)h.

Compare two metrics instead: tg0 + (1− t)g1 yields a path of Fredholm operators.

Start and end are invertible for g0, g1 ∈ R+(M)h

After taking the index, the path can be interpreted as a loop in K-theory

(in a proper implementation of this idea one uses KK-cycles)

Definition (Index difference)

By fixing g0 ∈ R+(M)h
inddiffg0

: R+(M)h −−−→ Ω∞+d+1KO
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The detection theorem

Theorem (Botvinnik, Ebert, and Randal-Williams [BERW17])

Md compact spin, d > 6, h ∈ R+(∂M), g0 ∈ R+(M)h and k > 0

(inddiffg0
)∗ : πk

(
R+(M)h

)
−−−→ KOk+d+1=:m(∗) =


Z ifm ≡ 0 mod 4

Z/2 ifm ≡ 1, 2 mod 8

0 else

is (rationally) surjective.
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Technical heart of the detection theorem

Let MTSpin(d) be the Madsen–Tillmann spectrum, λ−d : MTSpin(d) → Σ−dKO the KO-orientation

and Â = Ω∞(λ−d)

Theorem

There exists a fibration p fitting into the

following diagram such that

(i) the left square is homotopy

cartesian

(ii) the induced map on homotopy

fibres is inddiffg0

R+(M)h//Diff∂(M) X ∗

BDiff∂(M) Ω∞MTSpin(d) Ω∞+dKO

p

αM Â

After taking the fibre transport of p at g0 to get ρ, the diagram implies that

Ω∞+1MTSpin(d) R+(Md)h Ω∞+d+1KO
ρ inddiffg0

is homotopic toΩÂ. (Rational) surjectivity of Â∗ =⇒ Detection Theorem.
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Improving the detection theorem

Jannes Bantje, j.bantje@wwu.de 7 24

mailto:j.bantje@wwu.de


Spaces of PSC metrics and parametrised Morse theory

The Index of the Rosenberg-Dirac operator

The spin Dirac operator onM can be twisted by a bundle E, which introduces an extra term in

the Lichnerowicz formula (see enlargeability and Llarull’s theorem).

Rosenberg: Twist with the flatMiščenko–Fomenko line bundle LG := EG×G C∗(G) → BG,

where G = π1M.

The resulting twisted Dirac operatorDLG
now acts on a Hilbert-C∗(G)-module =⇒ its index is

defined by a KK(C`d, C∗(G))-cycle yielding an element in KOd(C
∗(G))

By using the Rosenberg index we can generalise the index difference

inddiffGg0
: R+(M)h −−−→ Ω∞+d+1KO(C∗(G))

⇒ Potential to detect more homotopy classes of R+(M)h!

Analogue for the map Â:

η : MTSpin(d)∧ BG+ Σ−dKO ∧ BG+ Σ−dKO(C∗(G))
λ−d∧id Σ−dν

where ν is the Novikov assembly map.

Jannes Bantje, j.bantje@wwu.de 8 24

mailto:j.bantje@wwu.de


Spaces of PSC metrics and parametrised Morse theory

The Detection theorem for higher index theory

Ebert and Randal-Williams [ERW19a; ERW19b] haven proven a detection theorem involving

G = π1M.The technical heart in this case is:

Theorem (Technical heart in [ERW19b])

Md spin, compact, d > 6 and (M,∂M) 2-connected. Then the technical heart theorem holds for

R+(M)h//Diff∂(M) X ∗

BDiff∂(M) Ω∞MTSpin(d)∧ BG+ Ω∞+dKO(C∗(G))

p

αM η

Actual detection results are harder to state, because of the involved assembly map. In particular,

they will always need additional assumptions on G.
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Extension to d > 5

Theorem (Perlmutter [Per17b])

The original detection theorem also holds for d > 5.

Back to the roots: Replace GRW methods by original methods ofMadsen andWeiss [MW07]

Series of two preprints (sadly, he left mathematics):

1. Extension ofMadsen andWeiss [MW07] methods

(to reprove high-dimensional MW theorem of Galatius and Randal-Williams [GRW14])

2. Application to PSC

Theorem (B.)

Both improvements can be carried out in unison.
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Parametrised Morse Theory
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Spaces of manifolds: Long manifolds

f

R

Definition

Let θ : B → BO(d) be a fibration, e.g. BSpin(d) → BO(d).
The space of θ-manifolds with one non-compact direction
is given by

Dθ,1 =
{
(W, f)

∣∣ f : Wd → R smooth and proper
}

Theorem ([GMTW09; GRW10])

Ω∞−1MTθ ' Dθ,1 ' BCobθ
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How can we turn a long d-manifold into a (d− 1)-manifold?

f

R

Just take f−1(a) at a regular value a ∈ R!

Madsen andWeissmethod:

Non-destructive way to lower the

dimension like this!

Have to perform a “regularisation”

to avoid critical points

Definition

Let 0 6 k 6 bd/2c.
LetD

[k]
θ ⊂ Dθ,1 subspace with fMorse,

Morse indices in {k, . . . , d− k} and
` : W → B (k− 1)-connected.

The restriction on Morse indices was

introduced by Perlmutter [Per17a].
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Local model for critical points

Definition

V = V+ ⊕ V− inner product space. The saddle is defined as

sdl(V) :=
{
v ∈ V

∣∣∣ ‖v+‖2‖v−‖2 6 1
}

Canonical height function on sdl(V) with unique critical point at the origin:

fV(v) = ‖v+‖2 − ‖v−‖2

Regularisation: Remove V+ or V− and adjust height function such that height approaches +∞ near

V+.

Definition

L
[k]
θ has the same data asD

[k]
θ with embedded saddles around all critical points, such that the

height functions fV and f are compatible.

Jannes Bantje, j.bantje@wwu.de 14 24

mailto:j.bantje@wwu.de


Spaces of PSC metrics and parametrised Morse theory

Plots of the saddle

V+

V−
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Regularisation involves choices!

V+

V−

critical point

S1 ×R (S1 ×R) t (S1 ×R)

regularisation

towards +∞ regularisation

towards −∞

Jannes Bantje, j.bantje@wwu.de 16 24

mailto:j.bantje@wwu.de


Spaces of PSC metrics and parametrised Morse theory

Custom indexing category

Definition

LetK[k] be the category of

finite sets T equipped with labelling functions T → {k, . . . , d− k}

Morphisms are injections over {k, . . . , d− k} plus signs±1 for all points not in the image.

Definition

The L
[k]
θ,T contains the same data as L

[k]
θ plus a choice±1 of regularisation direction for all but

finitely many critical points, which instead are indexed by T ∈ K[k].

Lemma

hocolim
T∈K[k]

L
[k]
θ,T L

[k]
θ D

[k]
θ

' '
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(d− 1)-mainfolds with surgery data

Definition

LetW
[k]
θ,T be the space of closed (d− 1) θ-manifoldsM equipped with surgery data indexed by T and

` : M → B (k− 1)-connected.

Given an element in L
[k]
θ,T

Move critical points indexed by T to height zero and others to height6 −1 or> +1 resp.
perform all regularisations (regularise the critical points indexed by T towards +∞) new

height function frg.
The embedded saddles indexed by T give surgery data Sp ×Dd−k ↪→ (frg)−1(0) for
p ∈ {k− 1, . . . , d− k− 1}

⇒ get an element ofW
[k]
θ,T

Lemma

The above procedure defines a map, which is a levelwise weak equivalence

hocolim
T∈K[k]

W
[k]
θ,T hocolim

T∈K[k]
L
[k]
θ,T

'
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Homotopy type of the cobordism category with Morse functions

Definition (Morse Grassmannian)

For integers k andN we let Gr[k]θ,d(R
d+N) denote the space

of triples (V, l, σ) where

(i) V ⊂ Rd+N is an element of Grθ,d(Rd+N)

(ii) l : V → R linear functional and σ : V × V → R
symmetric bilinear form s.th.: If l = 0, then σ is

non-degenerate with k 6 index(σ) 6 d− k

As for the usual Grassmannian:

Build a Thom spectrum out of the

Thom spaces of the complements

of the canonical bundles

γθ → Gr[k]θ,d:

hWk
θ,d = Th(−γθ)

Theorem ([MW07; Per17a])

The Pontryagin–Thom construction yields weak equivalences

Ω∞−1hWk
θ,d ' D

[k]
θ ' BCobmf,k

θ

The proof is a very involved inductive argument in k with [MW07, Thm. 1.2] as base case.
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Proofsketch
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Recap of parametrised Morse theory

W
[k]

θ,∅ hocolim
T∈K[k]

W
[k]
θ,T hocolim

T∈K[k]
L
[k]
θ,T D

[k]
θ Dθ,1

∐
[M]

BDiffθd−1(M) Ω∞MTθd−1 Ω∞−1hWk
θ,d Ω∞−1MTθd

' '

α

' '

There are comparison maps Σ−1MTθd−1 → hWk
θ,d → MTθd.

W
[k]
θ,∅ is the space of closed (d− 1)-manifolds with θd−1-structure, where θd−1 is the restriction

of θ to BO(d− 1).

α is the parametrised Pontryagin–Thom map
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Index theory for spaces of manifolds

Specialize the tangential structure to θ : BSpin(d)× BG → BO(d) and set C∗(θd) := C∗(G)⊗ C`d

D
[k],psc
θ D

psc
θ D(C∗(θd))1 ∗

D
[k]
θ Dθ,1 KO(C∗(θd))1

F

'

ind1

Ebert [Ebe19] established an index theory for spaces

of manifolds (in the generality of C∗-linear Dirac

operators).

Roughly: Index as map of spectra from the spaces of

manifolds spectrum of Galatius and

Randal-Williams [GRW10].

Lemma

The composition F ◦ ind1 factors

through degenerate KK-cycles.

The space of degenerate cycles is

contractible
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The fibration theorem

Definition

We defineW
[k],psc
θ,T asW

[k]
θ,T plus a psc

metric g onM, which restricts to the

standard metric on the surgery data,

i.e. e∗g = ground + gtor for
e : Sp ×Dd−k ↪→ M.

Theorem

For k > 3 the forgetful map

hocolim
T∈K[k]

W
[k],psc
θ,T → hocolim

T∈K[k]
W

[k]
θ,T

is a quasifibration with fibre over (M, ∅) given by R+(M).

The assumption k > 3 arises from the Gromov–Lawson–Chernysh surgery. Here the symmetric

restriction of the Morse indices fits perfectly!

k > 3 =⇒ d > 6

The tangential 2-type of a spin manifoldMn is BSpin(n)× Bπ1M → BO(n), hence in our case

of interest (k− 1)-connectivity of the structure maps is not an issue for k = 3.

After finding psc variants for L
[k]
θ,T and an identification of the induced map on

homotopy fibres…
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Final diagram

For d > 6 and k = 3.

R+(M) ΩKO(C∗(θd))1

W
[k],psc
θ,∅ W

[k],psc
θ hocolim

T∈K[k]
L
[k],psc
θ,T D

[k],psc
θ D

psc
θ D(C∗(θd))1

W
[k]

θ,∅ W
[k]
θ hocolim

T∈K[k]
L
[k]
θ,T D

[k]
θ Dθ,1 KO(C∗(θd))1

∐
[M]

BDiffθd−1(M) Ω∞MTθd−1 Ω∞−1hWk
θ,d Ω∞−1MTθd

inddiffG

'

F

' ' ind1

α

Âd−1=Ω∞λ−d+1
'

Ω∞−1λk
−d

' Ω∞−1λ−d

This establishes a “Technical Heart Theorem”!
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