

Spaces of PSC metrics and parametrised Morse theory

Detection theorems for $d \geq 5$ and higher index theory

Jannes Bantje, j.bantje@wwu.de

29 June, 2022, Münster

Recap on positive scalar curvature metrics

Let (M, g) be a Riemannian manifold.

- Scalar curvature is the weakest curvature notion derived from the Riemannian curvature tensor.
- At each point $p \in M$ it is only a scalar quantity \Rightarrow smooth function $\text{scal}_g: M \rightarrow \mathbb{R}$
- KAZDAN and WARNER [KW75]: metrics of negative scalar curvature always exist

Existence question

Given a smooth manifold M . Does M admit a metric with $\text{scal}_g > 0$?

- By now you probably know, that there are many known obstructions to admitting psc.
- Index theory provides the stronger results, but only works in the presence of spin structures.

The space of psc metrics

Definition (Space of metrics)

Let $\mathcal{R}(M) \subset C^\infty(M, \text{Sym}^2(T^*M))$ be the **space of Riemannian metrics** (with the C^∞ -topology).

Note: $\mathcal{R}(M)$ is convex, so $\mathcal{R}(M) \simeq *$

Definition (Space of psc metrics)

$$\mathcal{R}^+(M) \coloneqq \{g \in \mathcal{R}(M) \mid \text{scal}_g > 0\}$$

If M has boundary, one requires $g = h + dt^2$ near the boundary for $h \in \mathcal{R}^+(\partial M)$.

$$\mathcal{R}^+(M)_h \coloneqq \{g \in \mathcal{R}^+(M) \mid g|_{\partial M} \equiv h\}$$

Uniqueness question

Assume $\mathcal{R}^+(M) \neq \emptyset$. What is the homotopy type of $\mathcal{R}^+(M)$?

First main tool: Gromov–Lawson–Chernysh surgery

Let $\phi: V^k \times \mathbb{R}^{d-k} \hookrightarrow W^d$ be an open embedding and $h_V \in \mathcal{R}^+(V)$

Definition (\mathcal{R}^+ with prescribed metrics)

$$\mathcal{R}^+(W, \phi) := \{h \in \mathcal{R}^+(W) \mid \phi^*h = h_V + g_{\text{tor}}^{d-k} \text{ near } V \times D^{d-k} \subset V \times \mathbb{R}^{d-k}\}$$

Theorem (CHERNYSH [Che04])

If $d - k \geq 3$, then the inclusion

$$\mathcal{R}^+(W, \phi) \longrightarrow \mathcal{R}^+(W)$$

is a weak equivalence. Similarly for $\mathcal{R}^+(W)_g$

Corollary (Surgery equivalence)

For $V = S^k$ and $d - k, k \geq 3$ there is a preferred class of weak homotopy equivalences

$$\mathcal{R}^+(W)_g \simeq \mathcal{R}^+(W_\phi)_g$$

where W_ϕ denotes the surgered manifold.

Second main tool: the index difference

From now on we assume all manifolds to be spin.

Idea due to HITCHIN [Hit74]

Define a map to K-theory using index theory and find elements of $\pi_k(\mathcal{R}^+(M)_h)$ that survive.

- Index of the Dirac operator D_g will be zero for every $g \in \mathcal{R}^+(M)_h$.
- Compare two metrics instead: $tg_0 + (1-t)g_1$ yields a path of Fredholm operators.
- Start and end are invertible for $g_0, g_1 \in \mathcal{R}^+(M)_h$
- After taking the index, the path can be interpreted as a loop in K-theory

(in a proper implementation of this idea one uses KK-cycles)

Definition (Index difference)

By fixing $g_0 \in \mathcal{R}^+(M)_h$

$$\text{inddiff}_{g_0}: \mathcal{R}^+(M)_h \longrightarrow \Omega^{\infty+d+1} \mathbb{KO}$$

The detection theorem

Theorem (BOTVINNIK, EBERT, and RANDAL-WILLIAMS [BERW17])

M^d compact spin, $d \geq 6$, $h \in \mathcal{R}^+(\partial M)$, $g_0 \in \mathcal{R}^+(M)_h$ and $k \geq 0$

$$(\text{inndiff}_{g_0})_*: \pi_k(\mathcal{R}^+(M)_h) \longrightarrow \text{KO}_{k+d+1=:m}(*) = \begin{cases} \mathbb{Z} & \text{if } m \equiv 0 \pmod{4} \\ \mathbb{Z}/2 & \text{if } m \equiv 1, 2 \pmod{8} \\ 0 & \text{else} \end{cases}$$

is (rationally) surjective.

Technical heart of the detection theorem

Let $\text{MTSpin}(d)$ be the Madsen–Tillmann spectrum, $\lambda_{-d}: \text{MTSpin}(d) \rightarrow \Sigma^{-d} \mathbb{KO}$ the KO-orientation and $\widehat{\mathcal{A}} = \Omega^\infty(\lambda_{-d})$

Theorem

There exists a fibration p fitting into the following diagram such that

- (i) *the left square is homotopy cartesian*
- (ii) *the induced map on homotopy fibres is inndiff_{g_0}*

$$\begin{array}{ccccc}
 \mathcal{R}^+(M)_h // \text{Diff}_0(M) & \longrightarrow & X & \longrightarrow & * \\
 \downarrow & & \downarrow p & & \downarrow \\
 \text{BDiff}_0(M) & \xrightarrow{\alpha_M} & \Omega^\infty \text{MTSpin}(d) & \xrightarrow{\widehat{\mathcal{A}}} & \Omega^{\infty+d} \mathbb{KO}
 \end{array}$$

After taking the fibre transport of p at g_0 to get ρ , the diagram implies that

$$\Omega^{\infty+1} \text{MTSpin}(d) \xrightarrow{\rho} \mathcal{R}^+(M^d)_h \xrightarrow{\text{inndiff}_{g_0}} \Omega^{\infty+d+1} \mathbb{KO}$$

is homotopic to $\Omega \widehat{\mathcal{A}}$. (Rational) surjectivity of $\widehat{\mathcal{A}}_*$ \implies Detection Theorem.

Improving the detection theorem

The Index of the Rosenberg-Dirac operator

- The spin Dirac operator on M can be twisted by a bundle E , which introduces an extra term in the Lichnerowicz formula (see enlargeability and Llarull's theorem).
- Rosenberg: Twist with the flat **Miščenko–Fomenko line bundle** $\mathcal{L}_G \coloneqq EG \times_G C^*(G) \rightarrow BG$, where $G = \pi_1 M$.
- The resulting twisted Dirac operator $D_{\mathcal{L}_G}$ now acts on a Hilbert- $C^*(G)$ -module \Rightarrow its index is defined by a $KK(C\ell^d, C^*(G))$ -cycle yielding an element in $KO_d(C^*(G))$
- By using the Rosenberg index we can generalise the index difference

$$\text{inndiff}_{g_0}^G : \mathcal{R}^+(M)_h \longrightarrow \Omega^{\infty+d+1} \mathbb{KO}(C^*(G))$$

\Rightarrow Potential to detect more homotopy classes of $\mathcal{R}^+(M)_h$!

- Analogue for the map $\widehat{\mathcal{A}}$:

$$\eta : MTSpin(d) \wedge BG_+ \xrightarrow{\lambda_{-d} \wedge \text{id}} \Sigma^{-d} \mathbb{KO} \wedge BG_+ \xrightarrow{\Sigma^{-d} \nu} \Sigma^{-d} \mathbb{KO}(C^*(G))$$

where ν is the Novikov assembly map.

The Detection theorem for higher index theory

EBERT and RANDAL-WILLIAMS [ERW19a; ERW19b] have proven a detection theorem involving $G = \pi_1 M$. The technical heart in this case is:

Theorem (Technical heart in [ERW19b])

M^d spin, compact, $d \geq 6$ and $(M, \partial M)$ 2-connected. Then the technical heart theorem holds for

$$\begin{array}{ccccc} \mathcal{R}^+(M)_h // \text{Diff}_\partial(M) & \longrightarrow & X & \longrightarrow & * \\ \downarrow & & \downarrow p & & \downarrow \\ \text{BDiff}_\partial(M) & \xrightarrow{\alpha_M} & \Omega^\infty \text{MTSpin}(d) \wedge \text{BG}_+ & \xrightarrow{\eta} & \Omega^{\infty+d} \mathbb{KO}(C^*(G)) \end{array}$$

Actual detection results are harder to state, because of the involved assembly map. In particular, they will always need additional assumptions on G .

Extension to $d \geq 5$

Theorem (PERLMUTTER [Per17b])

The original detection theorem also holds for $d \geq 5$.

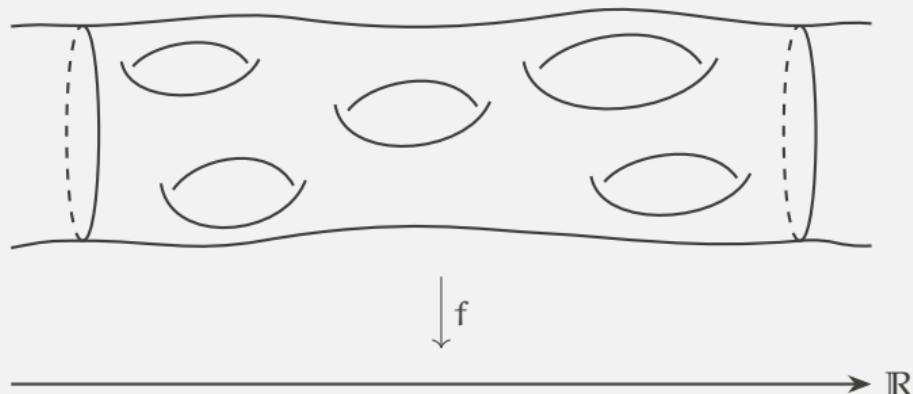
- Back to the roots: Replace GRW methods by original methods of MADSEN and WEISS [MW07]
- Series of two preprints (sadly, he left mathematics):
 1. Extension of MADSEN and WEISS [MW07] methods
(to reprove high-dimensional MW theorem of GALATIUS and RANDAL-WILLIAMS [GRW14])
 2. Application to PSC

Theorem (B.)

Both improvements can be carried out in unison.

Parametrised Morse Theory

Spaces of manifolds: Long manifolds



Definition

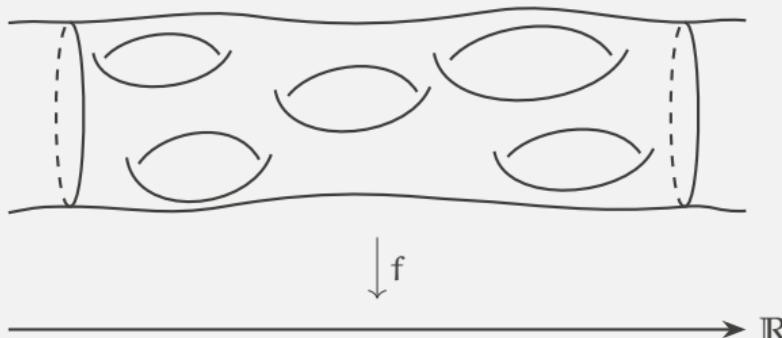
Let $\theta: B \rightarrow BO(d)$ be a fibration, e.g. $BSpin(d) \rightarrow BO(d)$.
The **space of θ -manifolds with one non-compact direction** is given by

$$\mathcal{D}_{\theta,1} = \{(W,f) \mid f: W^d \rightarrow \mathbb{R} \text{ smooth and proper}\}$$

Theorem ([GMTW09; GRW10])

$$\Omega^{\infty-1} MT\theta \simeq \mathcal{D}_{\theta,1} \simeq BCob_{\theta}$$

How can we turn a long d -manifold into a $(d - 1)$ -manifold?



Just take $f^{-1}(a)$ at a regular value $a \in \mathbb{R}$!

- MADSEN and WEISS method:
Non-destructive way to lower the dimension like this!
- Have to perform a “regularisation” to avoid critical points

Definition

Let $0 \leq k \leq \lfloor d/2 \rfloor$.

Let $\mathcal{D}_\theta^{[k]} \subset \mathcal{D}_{\theta,1}$ subspace with f Morse, Morse indices in $\{k, \dots, d-k\}$ and $\ell: W \rightarrow B$ $(k-1)$ -connected.

The restriction on Morse indices was introduced by PERLMUTTER [Per17a].

Local model for critical points

Definition

$V = V^+ \oplus V^-$ inner product space. The **saddle** is defined as

$$\text{sdl}(V) := \left\{ v \in V \mid \|v_+\|^2 \|v_-\|^2 \leq 1 \right\}$$

Canonical height function on $\text{sdl}(V)$ with unique critical point at the origin:

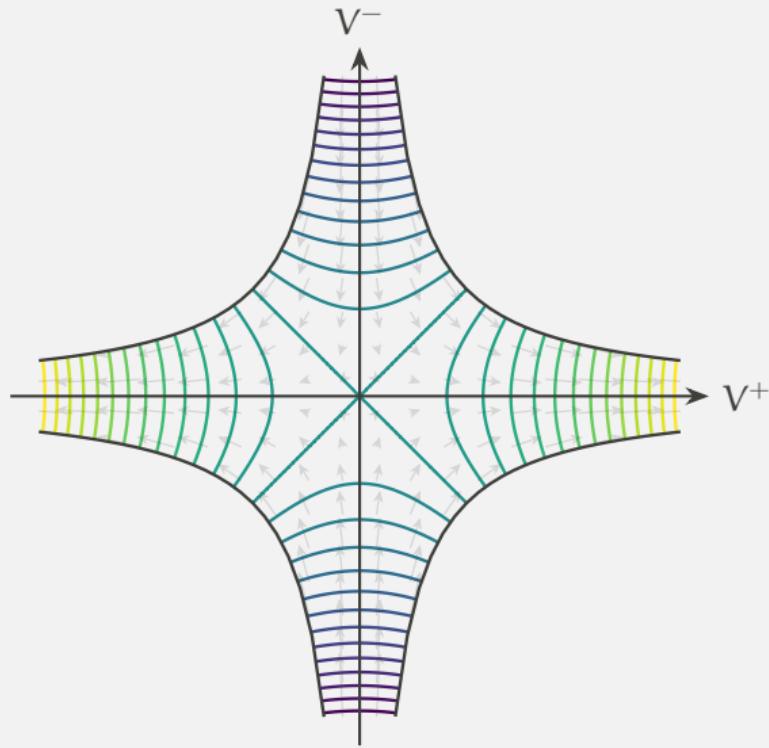
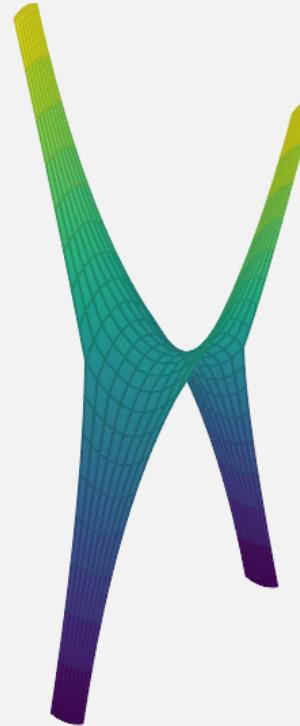
$$f_V(v) = \|v_+\|^2 - \|v_-\|^2$$

Regularisation: Remove V^+ or V^- and adjust height function such that height approaches $+\infty$ near V^+ .

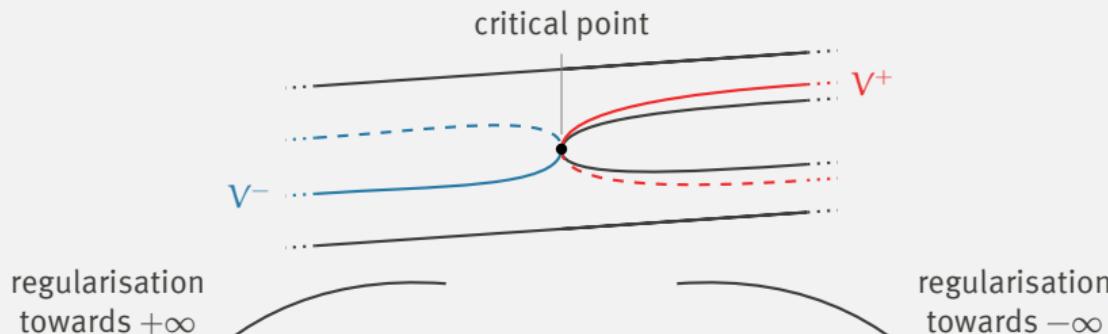
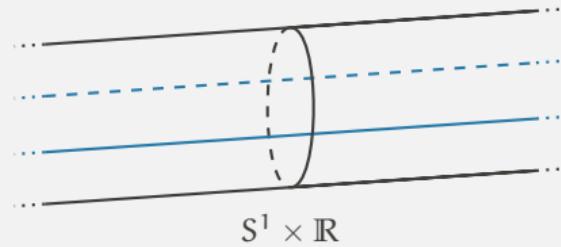
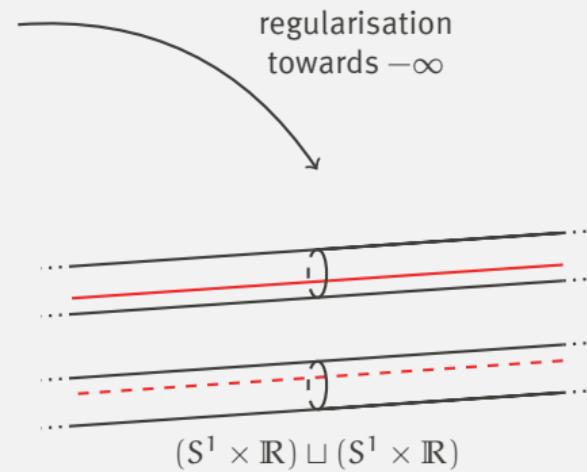
Definition

$\mathcal{L}_\theta^{[k]}$ has the same data as $\mathcal{D}_\theta^{[k]}$ with embedded saddles around all critical points, such that the height functions f_V and f are compatible.

Plots of the saddle



Regularisation involves choices!



Custom indexing category

Definition

Let $\mathcal{K}^{[k]}$ be the category of

- finite sets T equipped with labelling functions $T \rightarrow \{k, \dots, d-k\}$
- Morphisms are injections over $\{k, \dots, d-k\}$ plus signs ± 1 for all points not in the image.

Definition

The $\mathcal{L}_{\theta, T}^{[k]}$ contains the same data as $\mathcal{L}_{\theta}^{[k]}$ plus a choice ± 1 of regularisation direction for all but finitely many critical points, which instead are indexed by $T \in \mathcal{K}^{[k]}$.

Lemma

$$\operatorname{hocolim}_{T \in \mathcal{K}^{[k]}} \mathcal{L}_{\theta, T}^{[k]} \xrightarrow{\simeq} \mathcal{L}_{\theta}^{[k]} \xrightarrow{\simeq} \mathcal{D}_{\theta}^{[k]}$$

$(d-1)$ -manifolds with surgery data

Definition

Let $\mathcal{W}_{\theta, T}^{[k]}$ be the space of closed $(d-1)$ θ -manifolds M equipped with surgery data indexed by T and $\ell: M \rightarrow B$ $(k-1)$ -connected.

Given an element in $\mathcal{L}_{\theta, T}^{[k]}$

- Move critical points indexed by T to height zero and others to height ≤ -1 or $\geq +1$ resp.
- perform all regularisations (regularise the critical points indexed by T towards $+\infty$) \rightsquigarrow new height function f^{rg} .
- The embedded saddles indexed by T give surgery data $S^p \times D^{d-k} \hookrightarrow (f^{rg})^{-1}(0)$ for $p \in \{k-1, \dots, d-k-1\}$

\Rightarrow get an element of $\mathcal{W}_{\theta, T}^{[k]}$

Lemma

The above procedure defines a map, which is a levelwise weak equivalence

$$\operatorname{hocolim}_{T \in \mathcal{K}^{[k]}} \mathcal{W}_{\theta, T}^{[k]} \xleftarrow{\simeq} \operatorname{hocolim}_{T \in \mathcal{K}^{[k]}} \mathcal{L}_{\theta, T}^{[k]}$$

Homotopy type of the cobordism category with Morse functions

Definition (Morse Grassmannian)

For integers k and N we let $Gr_{\theta, d}^{[k]}(\mathbb{R}^{d+N})$ denote the space of triples (V, l, σ) where

- (i) $V \subset \mathbb{R}^{d+N}$ is an element of $Gr_{\theta, d}(\mathbb{R}^{d+N})$
- (ii) $l: V \rightarrow \mathbb{R}$ linear functional and $\sigma: V \times V \rightarrow \mathbb{R}$ symmetric bilinear form s.th.: If $l = 0$, then σ is non-degenerate with $k \leq \text{index}(\sigma) \leq d - k$

As for the usual Grassmannian:
Build a Thom spectrum out of the
Thom spaces of the complements
of the canonical bundles
 $\gamma_\theta \rightarrow Gr_{\theta, d}^{[k]}$:

$$hW_{\theta, d}^k = Th(-\gamma_\theta)$$

Theorem ([MW07; Per17a])

The Pontryagin–Thom construction yields weak equivalences

$$\Omega^{\infty-1} hW_{\theta, d}^k \simeq \mathcal{D}_\theta^{[k]} \simeq BCob_\theta^{mf, k}$$

The proof is a very involved inductive argument in k with [MW07, Thm. 1.2] as base case.

Proofsketch

Recap of parametrised Morse theory

$$\begin{array}{ccccccc} \mathcal{W}_{\theta, \emptyset}^{[k]} & \hookrightarrow & \operatorname{hocolim}_{T \in \mathcal{K}^{[k]}} \mathcal{W}_{\theta, T}^{[k]} & \xleftarrow{\simeq} & \operatorname{hocolim}_{T \in \mathcal{K}^{[k]}} \mathcal{L}_{\theta, T}^{[k]} & \xrightarrow{\simeq} & \mathcal{D}_{\theta}^{[k]} \hookrightarrow \mathcal{D}_{\theta, 1} \\ \parallel & & & & & & \parallel \\ \coprod_{[M]} \operatorname{BDiff}^{\theta_{d-1}}(M) & \xrightarrow{\alpha} & \Omega^{\infty} M T \theta_{d-1} & \rightarrow & \Omega^{\infty-1} h \mathcal{W}_{\theta, d}^k & \rightarrow & \Omega^{\infty-1} M T \theta_d \end{array}$$

- There are comparison maps $\Sigma^{-1} M T \theta_{d-1} \rightarrow h \mathcal{W}_{\theta, d}^k \rightarrow M T \theta_d$.
- $\mathcal{W}_{\theta, \emptyset}^{[k]}$ is the space of closed $(d-1)$ -manifolds with θ_{d-1} -structure, where θ_{d-1} is the restriction of θ to $BO(d-1)$.
- α is the parametrised Pontryagin–Thom map

Index theory for spaces of manifolds

Specialize the tangential structure to $\theta: \mathrm{BSpin}(d) \times \mathrm{BG} \rightarrow \mathrm{BO}(d)$ and set $C^*(\theta_d) := C^*(G) \otimes \mathbb{C}\ell_d$

$$\begin{array}{ccccc} \mathcal{D}_\theta^{[k], \mathrm{psc}} & \hookrightarrow & \mathcal{D}_\theta^{\mathrm{psc}} & \longrightarrow & \mathbb{D}(C^*(\theta_d))_1 \simeq * \\ \downarrow & & \downarrow F & & \downarrow \\ \mathcal{D}_\theta^{[k]} & \hookrightarrow & \mathcal{D}_{\theta,1} & \xrightarrow{\mathrm{ind}_1} & \mathbb{KO}(C^*(\theta_d))_1 \end{array}$$

- EBERT [Ebe19] established an index theory for spaces of manifolds (in the generality of C^* -linear Dirac operators).
- Roughly: Index as map of spectra from the spaces of manifolds spectrum of GALATIUS and RANDAL-WILLIAMS [GRW10].

Lemma

- The composition $F \circ \mathrm{ind}_1$ factors through degenerate KK-cycles.
- The space of degenerate cycles is contractible

The fibration theorem

Definition

We define $\mathcal{W}_{\theta, T}^{[k], \text{psc}}$ as $\mathcal{W}_{\theta, T}^{[k]}$ plus a psc metric g on M , which restricts to the standard metric on the surgery data, i.e. $e^*g = g_{\text{round}} + g_{\text{tor}}$ for $e: S^p \times D^{d-k} \hookrightarrow M$.

Theorem

For $k \geq 3$ the forgetful map

$$\operatorname{hocolim}_{T \in \mathcal{K}^{[k]}} \mathcal{W}_{\theta, T}^{[k], \text{psc}} \rightarrow \operatorname{hocolim}_{T \in \mathcal{K}^{[k]}} \mathcal{W}_{\theta, T}^{[k]}$$

is a quasifibration with fibre over (M, \emptyset) given by $\mathcal{R}^+(M)$.

- The assumption $k \geq 3$ arises from the Gromov–Lawson–Chernysh surgery. Here the symmetric restriction of the Morse indices fits perfectly!
- $k \geq 3 \implies d \geq 6$
- The tangential 2-type of a spin manifold M^n is $B\text{Spin}(n) \times B\pi_1 M \rightarrow BO(n)$, hence in our case of interest $(k-1)$ -connectivity of the structure maps is not an issue for $k=3$.

After finding psc variants for $\mathcal{L}_{\theta, T}^{[k]}$ and an identification of the induced map on homotopy fibres...

Final diagram

For $d \geq 6$ and $k = 3$.

$$\begin{array}{ccccccc}
 \mathcal{R}^+(M) & \xrightarrow{\text{indiff}^G} & \Omega \mathbb{KO}(C^*(\theta_d))_1 & & & & \\
 \downarrow & & \downarrow & & & & \downarrow \\
 \mathcal{W}_{\theta, \emptyset}^{[k], \text{psc}} & \hookrightarrow & \mathcal{W}_{\theta}^{[k], \text{psc}} & \xleftarrow{\simeq} & \text{hocolim}_{T \in \mathcal{K}^{[k]}} \mathcal{L}_{\theta, T}^{[k], \text{psc}} & \longrightarrow & \mathcal{D}_{\theta}^{[k], \text{psc}} \hookrightarrow \mathcal{D}_{\theta}^{\text{psc}} \longrightarrow \mathbb{D}(C^*(\theta_d))_1 \\
 \downarrow & & \downarrow & & \downarrow & & \downarrow \\
 \mathcal{W}_{\theta, \emptyset}^{[k]} & \hookrightarrow & \mathcal{W}_{\theta}^{[k]} & \xleftarrow{\simeq} & \text{hocolim}_{T \in \mathcal{K}^{[k]}} \mathcal{L}_{\theta, T}^{[k]} & \xrightarrow{\simeq} & \mathcal{D}_{\theta}^{[k]} \hookrightarrow \mathcal{D}_{\theta, 1} \xrightarrow{\text{ind}_1} \mathbb{KO}(C^*(\theta_d))_1 \\
 \parallel & & & & & \downarrow \gamma & \downarrow \gamma \Omega^{\infty-1} \lambda_{-d} \\
 \coprod_{[M]} \text{BDiff}^{\theta_{d-1}}(M) & \xrightarrow{\alpha} & \Omega^{\infty} \text{MT}\theta_{d-1} & \longrightarrow & \Omega^{\infty-1} h\mathcal{W}_{\theta, d}^k & \xrightarrow{\Omega^{\infty-1} \lambda_{-d}^k} & \Omega^{\infty-1} \text{MT}\theta_d \\
 & & & & \curvearrowleft \hat{\mathcal{A}}_{d-1} = \Omega^{\infty} \lambda_{-d+1} & &
 \end{array}$$

This establishes a “Technical Heart Theorem”!

Bibliography I

[BERW17] Boris BOTVINNIK, Johannes EBERT, and Oscar RANDAL-WILLIAMS. “Infinite loop spaces and positive scalar curvature”. In: **Inventiones Mathematicae** 209.3 (2017), pp. 749–835.

[Che04] Vladislav CHERNYSH. **On the homotopy type of the space $\mathcal{R}^+(M)$** . Version 2. preprint. May 14, 2004. arXiv: math/0405235.

[Ebe19] Johannes EBERT. “Index theory in spaces of manifolds”. In: **Math. Ann.** 374.1-2 (2019). DOI: 10.1007/s00208-019-01809-4.

[ERW19a] Johannes EBERT and Oscar RANDAL-WILLIAMS. “Infinite loop spaces and positive scalar curvature in the presence of a fundamental group”. In: **Geometry & Topology** 23.3 (2019), pp. 1549–1610. DOI: 10.2140/gt.2019.23.1549.

[ERW19b] Johannes EBERT and Oscar RANDAL-WILLIAMS. **The positive scalar curvature cobordism category**. to appear in Duke Math. J. 2019. arXiv: 1904.12951.

[GMTW09] Søren GALATIUS et al. “The homotopy type of the cobordism category”. In: **Acta Mathematica** 202.2 (2009), pp. 195–239. DOI: 10.1007/s11511-009-0036-9.

Bibliography II

[GRW10] Søren GALATIUS and Oscar RANDAL-WILLIAMS. “Monoids of moduli spaces of manifolds”. In: **Geometry & Topology** 14.3 (2010), pp. 1243–1302. DOI: [10.2140/gt.2010.14.1243](https://doi.org/10.2140/gt.2010.14.1243).

[GRW14] Søren GALATIUS and Oscar RANDAL-WILLIAMS. “Stable moduli spaces of high-dimensional manifolds”. In: **Acta Mathematica** 212.2 (2014), pp. 257–377. DOI: [10.1007/s11511-014-0112-7](https://doi.org/10.1007/s11511-014-0112-7).

[Hit74] Nigel HITCHIN. “Harmonic spinors”. In: **Advances in Mathematics** 14 (1974), pp. 1–55. DOI: [10.1016/0001-8708\(74\)90021-8](https://doi.org/10.1016/0001-8708(74)90021-8).

[KW75] Jerry L. KAZDAN and F. W. WARNER. “Scalar curvature and conformal deformation of Riemannian structure”. In: **Journal of Differential Geometry** 10 (1975), pp. 113–134. URL: <http://projecteuclid.org/euclid.jdg/1214432678>.

[MW07] Ib MADSEN and Michael WEISS. “The stable moduli space of Riemann surfaces: Mumford’s conjecture”. In: **Annals of Mathematics. Second Series** 165.3 (2007), pp. 843–941. DOI: [10.4007/annals.2007.165.843](https://doi.org/10.4007/annals.2007.165.843).

Bibliography III

- [Per17a] Nathan PERLMUTTER. **Cobordism Categories and Parametrized Morse Theory**. Version 2. preprint. May 8, 2017. arXiv: 1703.01047v2.
- [Per17b] Nathan PERLMUTTER. **Parametrized Morse Theory and Positive Scalar Curvature**. preprint. May 8, 2017. arXiv: 1705.02754.