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Recap on positive scalar curvature metrics

Let (M,g) be a Riemannian manifold.

Central notion in differential geometry: Riemannian

curvature tensor associated to g.

Tensor contraction turns this into scalar curvature 
smooth function scalg : M → R

Existence question

Given a smooth manifoldM, doesM admit a metric with

scalg > 0?

Admitting a positive scalar curvature metric has

topological implications

Only orientable surface admitting psc is S2

In fact, there are many (topological) obstructions to

admitting psc, e.g. the Â-genus

Sn

scal ≡ n(n− 1)

r2

Dimension 2: Gauß–Bonnet

0 <

∫
M

scalg dω = 4π · χ(M)
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The space of psc metrics

Definition (Space of metrics)

Let R(M) be the space of Riemannian metrics with the C∞-topology.
Note: R(M) is convex, so R(M) ' ∗

Definition (Space of psc metrics)

R+(M) :=
{
g ∈ R(M)

∣∣ scalg > 0
}

IfM has boundary, prescribe a metric h on ∂M and require product structure R+(M)h.

Uniqueness question

Assume R+(M) 6= ∅. What is the homotopy type of R+(M)?

Spaces of PSC metrics and parametrised Morse theory jbantje.gitlab.io 2

https://jbantje.gitlab.io


First main tool: Gromov–Lawson–Chernysh surgery

Let φ : Vk × Rd−k ↪→ Md be an open embedding and hV ∈ R+(V)

Definition

R+(M,φ) := space of psc metrics with prescribed metric on im(φ)

Theorem (Chernysh [Che04])

If d− k > 3, then the inclusion

R+(M,φ) −−−→ R+(M)

is a weak equivalence. Similarly forR+(M)h

Corollary (Surgery equivalence)

For V = Sk and d− k, k+ 1 > 3 there is a

preferred class of weak homotopy equivalences

R+(M) ' R+(Mφ)

whereMφ denotes the surgered manifold.
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Second main tool: the index difference

From now on we assume all manifolds to be spin.

Index difference of Hitchin [Hit74]

Idea: define a map to K-theory using index theory and use it to detect non-trivial elements of
πk(R

+(M)h). Result: For g0 ∈ R+(M)

inddiffg0
: R+(M) −−−→ Ω∞+d+1KO

Index of the Dirac operatorDg will be zero for every g ∈ R+(M) (Lichnerowicz).

Compare two metrics instead: tg0 + (1− t)g1 yields a path of Fredholm operators.

Start and end are invertible, since g0, g1 ∈ R+(M)

The invertible operators make up a contractible space (Kuiper)

⇒ After taking the index, the path can be interpreted as a loop in K-theory

(in a proper implementation of this idea I would use KK-cycles)
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The detection theorem

LetMd be compact spin, d > 6, h ∈ R+(∂M), g0 ∈ R+(M)h and k > 0.

Theorem (Botvinnik, Ebert, and Randal-Williams [BERW17])

The induced map

(inddiffg0
)∗ : πk

(
R+(M)h

)
−−−→ KOk+d+1=:m(∗) =


Z ifm ≡ 0 mod 4

Z/2 ifm ≡ 1, 2 mod 8

0 else

is (rationally) surjective.
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The factorisation theorem

LetMTSpin(d) be the Madsen–Tillmann spectrum
There is a KO-orientation λ−d : MTSpin(d) → Σ−dKO (“topological index”)

Theorem

There exists a map ρ : Ω∞+1MTSpin(d) → R+(M)h such that

Ω∞+1MTSpin(d) R+(M)h Ω∞+d+1KO
ρ

Ω∞+1λ−d

inddiffg0

is homotopy commutative.

(Rational) surjectivity ofΩ∞+1λ−d =⇒ Detection Theorem.
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Improving the detection theorem
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Improvement 1: Higher index theory

“richer” target for

index difference

Potential to detect more

classes of πkR
+(M)h

Higher index difference

inddiffG
g0

: R+(M)h −−−→ Ω∞+d+1KO(C∗(G))

where C∗(G) is the (reduced) group C∗-algebra for G = π1M.

The spin Dirac operator onM can be twisted by a bundle E, which introduces an extra term in the

Lichnerowicz formula (see enlargeability and Llarull’s theorem).

Rosenberg: Twist with the flatMiščenko line bundle LG := EG×G C∗(G) → BG

twisted Dirac operatorDLG
acts on a Hilbert-C∗(G)-module and has an index in KOd(C

∗(G))

Analogue for the topological index, using the Novikov assembly map ν:

topindG : MTSpin(d)∧ BG+ Σ−dKO ∧ BG+ Σ−dKO(C∗(G))
λ−d∧id Σ−dν
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The factorisation theorem for higher index theory

Theorem (Ebert and Randal-Williams [ERW19; ERW22])

Md spin, compact, d > 6. Then there exists ρ such that

Ω∞+1
(
MTSpin(d)∧ BG+

)
R+(M)h Ω∞+d+1KO(C∗(G))

ρ

Ω∞+1 topindG

inddiffG
g0

is homotopy commutative

To derive detection results: study the assembly map assumptions on G.
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Improvement 2: Extension to d > 5

Theorem (Perlmutter [Per17b])

The original detection and factorisation theorems also hold for d > 5.

Back to the roots: Replace GRWmethods by original methods ofMadsen andWeiss [MW07]

Series of two preprints (he left mathematics):

1. Extension ofMadsen andWeiss [MW07] methods

(to reprove high-dimensional MW theorem of Galatius and Randal-Williams [GRW14])

2. Application to PSC

Theorem B.

Both improvements, i.e.

1. incorporation the fundamental group via higher index theory

2. extension to d > 5

can be carried out in unison.
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Parametrised Morse Theory
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Spaces of manifolds: Long manifolds

f

R

Definition (Galatius and Randal-Williams)

The space of manifolds with one non-compact direction is
given by

D1 =
{
(W, f)

∣∣ f : Wd+1 → R smooth and proper
}

Theorem [GMTW09; GRW10]

Ω∞−1MTO(d+ 1) ' D1 ' BCobd+1
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How can we turn a long (d+ 1)-manifold into a d-manifold?

f

R

Just take f−1(a) at a regular value a ∈ R!

Madsen andWeissmethod:

Non-destructive way to lower the

dimension like this!

Have to perform a “regularisation”

to avoid critical points

Definition

Let 0 6 k 6 bd+ 1/2c.
LetD

[k] ⊂ D1 subspace with fMorse,
Morse indices in {k, . . . , d+ 1− k} and
` : W → BO(d) (k− 1)-connected.

The restriction on Morse indices was

introduced by Perlmutter [Per17a].
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Local model for critical points

Definition

V = V+ ⊕ V− inner product space. The saddle is defined as

sdl(V) :=
{
v ∈ V

∣∣∣ ‖v+‖2‖v−‖2 6 1
}

Canonical height function on sdl(V) with unique critical point at the origin:

fV(v) = ‖v+‖2 − ‖v−‖2

Spaces of PSC metrics and parametrised Morse theory jbantje.gitlab.io 12

https://jbantje.gitlab.io


Plots of the saddle

V+

V−
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Regularisation involves choices!

V+

V−

critical point

S1 × R (S1 × R) t (S1 × R)

regularisation

towards+∞ regularisation

towards−∞
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The homotopy colimit decomposition

For T a finite set:

Definition

LetW
[k]
T be the space of closed d-manifoldsM equipped with surgery data indexed by T and

` : M → BO(d) (k− 1)-connected.

K[k] custom indexing category

finite sets and injections over {k, . . . , d+ 1− k}

Morphisms know a sign±∞ for elements not in the image

Theorem [MW07; Per17a]

D
[k] ' hocolim

T∈K[k]
W

[k]
θ,T

Add local data at critical points

Encode regularisation choices usingK[k]

Perform the regularisation and take preimage at zero.
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Homotopy type of the Morse cobordism category

Definition (Morse Grassmannian)

Let Gr[k]d+1,θ(R
d+1+N) denote the space of triples (V, l, σ)

where

(i) V ⊂ Rd+1+N is an element of Grd+1,θ(R
d+1+N)

(ii) l : V → R linear functional and σ : V × V → R

symmetric bilinear form s.th.: If l = 0, then σ is
non-degenerate with k 6 index(σ) 6 d+ 1− k

As for the usual Grassmannian:

Build a Thom spectrum

MTθ[k] := Th(−γθ)

where γθ is the canonical bundle.

Theorem [MW07; Per17a]

The Pontryagin–Thom construction yields weak equivalences

Ω∞−1MTθ[k](d+ 1) ' D
[k]
θ ' BCobmf,k

θ

The proof is a very involved inductive argument in k with [MW07, Thm. 1.2] as base case.

Homotopy colimit decomposition is central to the proof.
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Proofsketch (back to psc)
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Blueprint for the factorisation

Goal

Find a map ρ such that the following commutes

Ω∞+1MTSpin(d) R+(M)h Ω∞+d+1KO
ρ

Ω∞+1λ−d

inddiffg0

Idea

Construct a fibration p with fibre R+(M) as on the right

… fitting into the diagram on the right …

s.th. the induced map on homotopy fibres is inddiffg0

The fibre transport of p yields

ρ : Ω∞+1MTSpin(d) −−−→ R+(M)

with the desired properties.

R+(M) ΩKO

X ∗

Ω∞MTSpin(d) KO

p

Ω∞λ−d

Remark: Such diagrams are a common

theme in all the previous work [BERW17;

ERW19; ERW22].
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Outline map of the proof

Index theorem for spaces of manifoldsSpaces of manifoldsParametrised Morse theory

PSC fibration The vanishing theorem

R+(M) ΩKO
(
C∗

d+1(G)
)
1

hocolim
T∈K[k]

W
[k],psc
θ,T D

[k],psc
θ D

psc
θ D

psc,op
θ D

(
C∗

d+1(G)
)
1

∗

hocolim
T∈K[k]

W
[k]
θ,T D

[k]
θ Dθ,1 D

op
θ,1 KO

(
C∗

d+1(G)
)
1

Ω∞−1MTθ[k] Ω∞−1MTθ Ω∞+dKO(C∗(G))

inddiffG

'

F

'

' ' ind1

'' '

Ω∞−1 topindG

Comparison maps

Σ−1MTθ(d) −−−→ MTθ[k](d+ 1) −−−→ MTθ(d+ 1)

PSC fibration

W
[k],psc
θ,T asW

[k]
θ,T plus a psc metric g onM compatible with the surgery data

For k > 3 the forgetful map is a quasifibration with fibre over (M, ∅) given by R+(M).

Here the surgery equivalence is crucial!

Index theory for spaces of manifolds [Ebe19]

Consider θ : BSpin(d+ 1)× BG → BO(d+ 1) and set C∗
d+1(G) := C∗(G)⊗ C`d+1

Add operator theoretic data to getD
op
θ

Use this data to produce a suitable KK-cycle definition of ind1

The index theorem for spaces of manifolds

Every index theorem: analytical index = topological index

Here: homotopy commutativity of the purple part

The vanishing theorem

The composition ind1 ◦ Fmaps into the degenerate cycles
The space of degenerate cycles is contractible homotopy fibre sequence on the right

Next steps …

Find suitable psc variants of all spaces in the third row

Check that the induced map on homotopy fibres is the index difference
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Corollary: Factorisation

Assumptions

PSC fibration needs k > 3 =⇒ d+ 1 > 6 ⇔ d > 5

Index theory needs the tangential structure θ : BSpin(d)× BG → BO(d)

Theorem (B.)

LetM be a compact connected spin manifold of dimension d > 5 with a map f : M → BG which is

split-surjective on π1. Furthermore, let h ∈ R+(∂M) and g0 ∈ R+(M)h. Then there is a map ρ such
that the composition

Ω∞+1MTθ(d) R+(M)h Ω∞+d+1KO(C∗(G))
ρ inddiffG

g0

is weakly homotopic toΩ∞+1 topindG.
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Bonus: The action of the diffeomorphism group

Pulling back metrics yields an action

Diff(M) y R+(M)

By comparing the two fibrations

R+(M) R+(M) R+(M)

R+(M)//Diff(M) W
[3],psc
θ,∅ hocolim

T∈K[k]
W

[3],psc
θ,T

BDiff(M) W
[3]

θ,∅ hocolim
T∈K[k]

W
[3]
θ,T Ω∞−1MTθ[3]'

one can prove the following …
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Rigidity results for the action of the diffeomorphism group

Theorem (B.)

LetM be a compact spin manifold of dimension d > 5 and θ : BSpin(d)× BG → BO(d) its tangential

2-type. Then for h ∈ R+(∂M) the action map Σ : DiffSpin,G
∂ (M) → hAut(R+(M)h) factors up to

homotopy through

DiffSpin,G
∂ (M) ' ΩBDiffSpin,G

∂ (M)
ΩαM−−−→ Ω∞+1

(
MTSpin(d)∧ BG+

)

Theorem (B.)

LetM be a compact manifold of dimension d > 5 with (M,∂M) 2-connected, θ its tangential 2-type
and h ∈ R+(∂M). Then the action map Σ∗ : π∗ Diff∂(M) → π∗(hAut(R+(M)h)) factors through the

map induced by

Diff∂(M) ' ΩBDiff∂(M)
ΩαM−−−→ Ω∞+1MTθ(d)
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